Analisa Logging

Secara umum, analisa log dibedakan atas tiga kompenen, berupa Log Lithologi, Log Resistivity dan Log Porosity. Log Lithologi antara lain Gamma Ray (GR) Log dan Spontaneous Potential (SP) Log. Untuk Log Resistivity diantaranya adalah Induction Log, Short Normal Log, Microlog, Lateral Log dan MSFL. Sedangkan untuk Log Porosity terdiri dari Neutron Log dan Sonic Log.

Pada prakteknya di lapangan tidak semua jenis log diatas dapat dilakukan. Hal ini mengingat biaya (cost) yang besar untuk tiap jenis log sehingga hanya digunakan beberapa jenis log tertentu dan kecenderungan untuk mengkombinasikan beberapa jenis log (combination log) dan ini yang biasa digunakan.

Beberapa analisa jenis log yang umum digunakan antara lain Analisa Spontaneous Potential (SP) Log, Analisa Log Induksi, dan Analisa Log Radioaktif yang terdiri dari Gamma Ray Log, Neutron Log, dan Formation Density Log.

-Analisa Sponteneous Potential Log (SP) Log
Pada sumur yang mempunyai kandungan hidrokarbon perlu dilakukan logging dengan berbagai jenis alat log. Log tersebut dapat berupa Log Listrik, Log Radioaktif serta berbagai jenis log lainnya. tahap pertama dalam analisa log adalah mengenal lapisan permeable dan serpih yang non permeable. Log yang digunakan adalah Spontaneous Potential (SP) Log.
Log SP merupakan rekaman perbedaan potensial listrik antara elektroda di permukaan yang tetap dengan elektroda yang terdapat di dalam lubang bor yang bergerak naik turun, pada sebuah lubang sumur yang terdiri dari lapisan permeable dan non permeable. Secara alamiah karena perbedaan kandungan garam air, arus listrik hanya dapat mengalir di sekeliling perbatasan formasi di dalam lubang bor. Pada lapisan serpih yang tidak terdapat aliran listrik, potensialnya adalah konstan dengan kata lain pembacaan log SP nya rata.

-Analisa Log Induksi
Log induksi digenakan untuk mendeteksi konduktivitas formasi yang selanjutnya dikonversi dalam satuan resistivity. Pengukuran dengan log induksi banyak menggunakan parameter dan korelasi grafik. Hal ini dimaksudkan untuk memperoleh hasil yang valid sehingga mempermudah analisa.

-Analisa Log Radioaktif
1. Gamma Ray Log
- Untuk membedakan lapisan-lapisa shale dan non shale pada sumur-sumur open hole atau cased hole dan juga pada kondisi ada lumpur maupun tidak.
- Sebagai pengganti SP Log untuk maksud-maksud pendeteksian lapisan permeable, karena untuk formasi yang tidak terlalu resistif hasil SP Log tidak terlalu akurat
- Untuk mengetahui korelasi batuan dan prosentase kandungan shale pada lapisan permeable
- Mendeteksi mineral-mineral radioaktif
- Menentukan kedalaman perforasi yang telah diinjeksi air (water plugging)
2. Neutron Log
- Untuk menentukan total porosity
- Mendeteksi adanya formasi gas setelah dikombinasikan dengan porosity tool lainnya seperti Density Log)
- Penentuan korelasi batuan
3. Formation Density Log
- Untuk mengukur porositas batuan
- Mengidentifikasi mineral batuan
- Mengevaluasi shally sand dan lithologi yang kompak
- Log ini juga dapat digunakan sebagai indikasi adanya gas

Gamma Ray Log merupakan rekaman tingkat radioaktivitas alami yang terjadi karena tiga unsur yaitu Uranium (U), Thorium (Th) dan Potasium (K) yang dipancarkan oleh batuan. Pemancaran yang terus menerus terdiri dari semburan pendek tenaga tinggi sinar gamma yang mampu menembus batuan sehingga dapat dideteksi oleh detektor.
Sinar gamma sangat efektif dalam membedakan lapisan permeable dan non permeable karena unsur-unsur radioaktif cenderung berpusat di dalam serpih yang non permeable dan tidak banyak terdapat dalam batuan karbonat atau pasir yang secara umum besifat permeable. Kadangkala lumpur bor mengandung sejumlah unsur Potasium karena zat Potassium Chloride ditambahkan kedalam lumpur untuk mencegah pembengkakan serpih. Radioaktivitas dari lumpur akan mempengaruhi pembacaan Log Gamma Ray berupa tingkatan latar belakang radiasi yang tinggi.

-Analisa Log Kombinasi
Log kombinasi diaplikasikan untuk semua junis log sebelumnya seperti Log Listrik, Log Induksi dan Log Radioaktif untuk mendapatkan kepastian jenis formasi beserta kandungan formasi tersebut.
Kombinasi log yang sering digunakan dua jenis log yaitu Log Listrik dan Log Radioaktif. Log Listrik yang dimaksudkan adalah SP Log dan Log Induksi untuk Short Normal Log. Sedangkan Log Radioaktif yang dimaksud adalah Gamma Ray (GR) Log, Neutron Log dan Formation Density Log (FDL). Dari analisa Log Kombinasi ini dapat ditentukan kandungan HC dari formasi pada interval kedalaman tertentu.

Interpretasi log dilakukan untuk mengetahui harga Rw dan Sw serta menentukan lithologi batuannya. Interpretasi ini dapat dibedakan menjadi dua macam yaitu interpretasi kualitatif dan interpretasi kuantitatif. Interpretasi kualitatif meliputi penentuan lapisan permeable, penentuan batas lapisan dan penentuan zona interest. Log yang digunakan berupa SP Log, GR Log dan Resistivity Log. Sementara interpretasi kuantitatif meliputi penentuan porositas dan saturasi air (Sw). Jenis Log yang digunakan Neutron Log, Density Log, Sonic Log dan Resistivity Log. Adapun kondisi interpretasi yang dilakukan berupa Clean Formation (quick look) dan Shally Sand Formation (detailed).

Pengukuran dengan SP Log dilakukan untuk menentukan Vclay sehingga dapat diketahui jenis fluida yang terdapat dalam formasi yang dianalisa serta kandungan batuan dan kondisi dari kedalaman formasi tersebut.

Pada GR Log didapatkan suatu kurva yang menunjukkan besarnya intensits radioaktif yang ada dalam formasi. Dengan menarik garis GR yang mempunyai harga minimum dan harga maksimum pada penampang log maka kurva GR yang jatuh diantara kedua lapisan kurva tersebut merupakan indikasi adanya lapisan shale.

Pada Neutron Log, bila konsentrasi hidrogen didalam formasi besar maka semua partikel neutron akan mengalami penurunan energi serta tertangkap tidak jauh dari sumber radioaktifnya. Hal yang perlu digarisbawahi bahwa neuton hidrogen tidak mewakili porositas batuan karena penentuannya didasarkan pada konsentrasi hidrogen. Neutron tidak dapat membedakan antara atom hidrogen bebas dengan atom hidrogen yang secara kimia terikat dengan mineral batuan, akibatnya pada formasi lempung yang banyak mengandung atom-atom hidrogen didalam susunan molekulnya seolah-olah mempunyai porositas tinggi.
Faktor-faktor yang mempengaruhi bentuk kurva Neutron Log adalah shale atau clay dimana semakin besar konsentrasinya dalm lapisan permeable akan memperbesar harga porositas batuan. Kekompakan batuan juga akan mempengaruhi defleksi kurva Neutron Log dimana semakin kompak batuan tersebut maka harga porositas batuan akan menurun dan kandungan fluida yang ada dalam batuan apabila mengandung minyak dan gas maka akan mempunyai harga porositas yang relatif kecil, sedangkan air asin atau air tawar akan memberikan harga porositas neutron yang mendekati harga porositas sebenarnya.

Density Log menunjukkan besarnya densitas lapisan yang ditembus oleh lubang bor sehingga berhubungan dengan porositas batuan. Besar kecilnya density juga dipengaruhi oleh kekompakan batuan dengan derajat kekompakan yang variatif, dimana semakin kompak batuan maka porositas batuan tersebut akan semakin kecil. Pada batuan yang sangat kompak, harga porositasnya mendekati harga nol sehingga densitasnya mendekati densitas matrik.

Kombinasi Log digunakan untuk memperoleh data yang diperlukan untuk mengevaluasi formasi serta menentukan potential productivity yang dikandungnya. Pada kombinasi log antara Neutron Log dan Density Log maka akan terdapat tampilan Log Density yang dari kiri ke kanan satuannya semakin besar sedangkan Neutron Log dari kiri ke kanan satuan porositasnya semakin kecil sehingga dapat diinterpretasikan sebagai berikut :
1. Lapisan shale akan memberikan separasi negatif berdasar harga densitas yang besar pada Density Log dan harga porositas neutron yang besar pada Neutron Log.
2. Lapisan hidrokarbon akan memberikan separasi positif dimana kurva Density Log akan cenderung mempunyai defleksi ke kiri dan Neutron Log cenderung mempunyai defleksi ke kanan.
3. Lapisan air asin atau air tawar akan memberikan separasi positif sehingga untuk dapat membedakan antara separasi positif pada lapisan air dengan lapisan hidrokarbon maka jalan terbaik adalah dengan melihat kurva Resistivity Log dan SP Log.

Sumber : http://pamujiatmowiyono.blogspot.com/

Nasehat Menasehati


Alhamdulillaahirabbil 'aalamiin, Allahuma shalli 'ala Muhammad wa'ala aalihi washahbihii ajmai'iin. Saudaraku yang baik, dalam Al Qur’an surat Al Ashr, Allah menjelaskan kepada kita tentang ciri orang beriman. Yaitu, orang-orang yang saling menasehati dalam kebeneran dan kesabaran. Artinya, setiap muslim beriman hendaknya berupaya semaksimal mungkin untuk saling mengajak kepada kebaikan, mengajak kepada hal yang akan mendekatkan kepada Allah. Dan, melarang dari perbuatan yang tidak disukai Allah.

Salah sdatu hikmah mengapa kita harus saling menasehati adalah karena setiap orang mendambakan keselamatan hidup. Keselamatan dari kerusakan, dari hal-hal yang membahayakan dirinya, lahir atau batin. Dan, harus ada yang memberitahukan kepada kita tentang hal-hal yang tidak kita ketahui tersebut. Pemberitahuan itulah yang bisa jadi sebuah nasehat, masukan atau kritikan. Sehingga, sungguh sangat penting sebuah nasehat dalam kehidupan kita. Agar kita tahu kekurangan kita dan segera memperbaikinya.

Sayangnya, diantara kita masih belum siap menerima kritikan, nasehat dari orang lain. Terlebih jika orang yang memberi nasehat itu kita anggap lebih rendah dari kita. Sehingga, langkah awal kita untuk mengamalakan ayat di atas, adalah berusaha menerima kritikan, saran dari siapapun tentang diri kita, tanpa melihat dari siapa yang mengeluarkan nasehat trersebut.

Kita harus selalu bahagia, ketika ada yang memberikan saran kepada kita. Ibarat cermin, kita selalu ingin tampak rapih di depan cermin. Jika ada yang berantakan tanpa segan kita membetulkannya. Kita tidak kesal dengan cermin yang menampilkan bayangan kita yang berantakan. Justru kita tetap merapihkan bagian yang kurang bagus. Begitulah orang yang selalau senang menerima kritikan dari orang lain. Ia akan berterima kasih, bukannya marah atau kesal. Yang ia lakukan selanjutnya adalah segera memperbaiki kekurangan yang disebutkan itu, seperti saat ia lantas merapihkan dirinya di depan cermin.

Subhannalah, andai setiap orang mampu bersikap seperti hal ini. Senang menerima kritikandan segera memperbaikinya, tentu setiap akhlaq, perilaku kita dapat terjaga. Begitu ada yang salah dengan sikap kita, orang yang lain sigap memberitahukannya. Mudah-mudahhan suatu saat kita memiliki lingkungan seperti ini. Inilah hidup jika saling menasehati, Insya Allah.

Gamma-Ray Density Log

Density logs first appeared in 1957, based on the principle of gama ray absorption by Compton scattering. Early tools were called gamma - gamma density logs because they emitted and recorded gamma rays. The log displayed counts per second, which was transformed to density by a semi-logarithmic transform. Modern tools have two detectors, which allows borehole compensation to be applied. They are scaled in units of density (grams / cc or Kilograms / cubic meter). Some density logs also record photoelectric capture cross section which is useful in lithology analysis. Some density logs are displayed in porosity units (percent or decimal fraction).

The tool can be used in air or mud filled open boreholes. Experimental tools approaching commercialization are being developed for cased hole applications.


The density logging tool emits gamma rays from a chemical source at the bottom of the tool The gamma rays enter the surrounding rocks where some are absorbed. Some gamma rays survive to reach scintillation counters mounted about 18 and 24 inches above the source. The number of gamma rays arriving at the far detector is inversely proportional to the electron density of the rock, which in turn is proportional to the actual rock density. Data from the closer detector is used to correct for borehole effects.

Porosity can be derived from density and can be presented as a percent or as a decimal fraction on the log. This porosity may still contain artifacts from shale and minerals not accounted for by the logging computer, so this porosity is NOT a final answer.

The energy of the returning gamma rays is a function of the photoelectric capture cross section of the rock, which is indicative of mineralogy. A caliper and gamma ray curve are also presented, along with the density correction curve. Note that the correction has already been applied to the recorded density data by the computer.

Early density logs had only one detector and were recorded in counts per second. Density was derived with a semi-logarithmic transform.

Borehole gravity meters measure the pull of gravity in a station by station survey. Results are translated into formation density. Depth of investigation is large compared to normal logs so anomalies some distance from the borehole may be detected.

A typical density logging tool is shown at the right. The tool is pressed against one side of the borehole by a back-up arm that also serves to measure a diameter of the borehole. Two detectors at fixed spacings from the source are shown. The source is well-shielded from the two detectors and only scattered gamma radiation is detected. The intensity of the scattered radiation will be dominated by the density variations along the path from source to detector.

If there is no stand-off (of mud or mudcake) between the tool face and the formation, and if the tool is properly calibrated, then the apparent density from both detectors will be the same and equal to the true formation density. If they are different, there must be mud between the tool face and the rock.

If there is some standoff, a correction to the density from the long spaced detector can be generated from the difference between the apparent density seen by the far and the near detectors. The actual correction function can be determined empirically by placing the density device in a number of formations to measure the apparent long-spaced and short-spaced densities for various thicknesses of mudcake of a variety of densities. Computer modeling has augmented these laboratory studies.

Most modern two-detector density devices use multiple energy windows to derive the density, the photoelectric factor, and the correction curve as described above. In one three-detector wireline version, the combination of multiple detectors and multiple energy windows produce on the order of a dozen counting rate measurements at each depth. Each counting rate can be described by a forward model relating the rate to the five important parameters of density logging: formation density, formation photoelectric factor, mudcake density, mudcake photoelectric factor, and the thickness of the mudcake.


the fluid density log

which measures the absorption of gamma rays by the fluid between a gamma ray source and a detector